STAY ENGAGED. STAY INFORMED.

TUESDAY, APRIL 14:
PHARMACY RESIDENTS
LEADING PRACTICE CHANGE
WELCOME

Anthony Pudlo, PharmD, MBA, BCACP
Vice President, Professional Affairs
Iowa Pharmacy Association

[Image of Anthony Pudlo]
ANALYSIS OF MEDICATION DISCREPANCIES IDENTIFIED BY CLINICAL PHARMACISTS IN AN OUTPATIENT CARDIOLOGY CLINIC

Brittany Bruch, PharmD
PGY1 Ambulatory Care Pharmacy Resident
University of Iowa Health Care

brittany-bruch@uiowa.edu
Analysis of Medication Discrepancies Identified by Clinical Pharmacists in an Outpatient Cardiology Clinic

Brittany A. Bruch, PharmD
PGY1 Pharmacy Resident with an Ambulatory Care Focus
University of Iowa Hospitals and Clinics, Iowa City, IA
Disclaimer

• Brittany A. Bruch reports that she has no actual or potential conflict of interest in relation to this presentation.

• Off-label use of medication will not be discussed during this presentation.
Acknowledgements

• Residency project advisors:
 – Ryan B. Jacobsen, PharmD, BCPS
 – Milena A. Gebska, MD, PhD
About UI Hospitals and Clinics

• 730-bed tertiary care hospital in Iowa City, IA
• US News “Best Hospital” for 24 consecutive years
• By the numbers (2014):
 • 30,762 admissions
 • 56,418 ER visits
 • 811,173 clinic visits
About UI Ambulatory Care

- 811,173 clinic visits (2014)
- Over 200 outpatient clinics
- Ambulatory clinics:
 - Iowa River Landing
 - UI Quick Care
 - UI Community Medical Services
 - UI Hospitals and Clinics
Medication Discrepancies

• In 2013, the cost from avoidable medication errors in the United States was approximately $20 billion
 – At least 25% were considered preventable

• As many as 60% of errors occur during care transitions

• In 2005, the Joint Commission named medication reconciliation as one of its National Patient Safety Goals (NPSG 8)
 – NPSG 8 was suspended in 2009 and reintroduced in 2011

Objectives

• Identify the number and type of clinically important medication discrepancies among medication lists using a Physician-Pharmacist Collaborative Model in an outpatient cardiology clinic

• Analyze potential predictors of medication discrepancies
Study Designs and Methods

- Retrospective review

- Inclusion criteria:
 - Current use of ≥ 3 chronic medications
 - Completion of a comprehensive medication review by a clinical pharmacist during the study period (09/15/14-01/31/15)

- Exclusion criteria:
 - Subsequent visits were excluded if a patient was seen more than once during the study period
Medication List Comparison

1. Medication list prior to review by pharmacist (pre-pharmacist list)
2. Medication list following comprehensive review by pharmacist (post-pharmacist list)
3. Medication list from primary care provider
Outcomes

• Primary
 – Number and type of medication discrepancies between the pre-pharmacist and post-pharmacist medication lists
 – Number of medication discrepancies involving cardiovascular medications

• Secondary
 – Potential predictors of medication discrepancies
 • Age
 • Number of prescribers
 • Hospitalization within the past 30 days
 • Number of medications
Medication Discrepancies Definitions

• Incorrect medication
 – Different medication within same class

• Incorrect dose
 – Different cumulative dose

• Incorrect directions
 – Same cumulative dose but different directions or tablet strength

• Omission
 – Missing
Medication Discrepancies Definitions

• Level of harm
 – Low: non-prescription medications
 – Moderate: prescription medications (including “as needed”)
 – High: medications that are identified as capable of causing significant harm if used incorrectly

• Cardiovascular discrepancy
 – Any drug that influences cardiac care (e.g., antiplatelets, anticoagulants, antihypertensives, antiarrhythmics, and heart failure medications)
Results

Total medication reviews during study period (09/15/14-01/31/15)
\(n = 134 \)

Medication reviews excluded
\(n = 13 \)

Medication reviews included
\(n = 121 \)

- UIHC PCP
 \(n = 56 \)
- Non-UIHC PCP
 \(n = 54 \)
- No PCP
 \(n = 11 \)
Patient Demographics

<table>
<thead>
<tr>
<th>Clinical Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Females: 68 (56%)</td>
</tr>
<tr>
<td></td>
<td>Males: 53 (44%)</td>
</tr>
<tr>
<td>Average age</td>
<td>60.3 years ± 14 years</td>
</tr>
<tr>
<td>Average number of medications</td>
<td>11.2 ± 5 medications</td>
</tr>
<tr>
<td>Average minimum number of prescribers</td>
<td>2.3 ± 1 prescriber</td>
</tr>
<tr>
<td>Hospitalization within past 30 days</td>
<td>Yes: 16</td>
</tr>
<tr>
<td></td>
<td>No: 105</td>
</tr>
<tr>
<td>Visit with clinical pharmacist</td>
<td>First: 55</td>
</tr>
<tr>
<td></td>
<td>Return: 66</td>
</tr>
</tbody>
</table>
Results – All Visits

Average discrepancies/patient: 1.6 (range: 0-17)
Preliminary Conclusions

• Majority of identified discrepancies were considered moderate harm (55%)

• Many discrepancies were classified as medication omission (47%)

• Large percentage of medication discrepancies related to cardiac care (29%)

• Further data analysis is currently in progress
EVALUATION OF IRON DEFICIENCY ANEMIA IN A HEMATOLOGY-ONCOLOGY POPULATION AT A LARGE ACADEMIC MEDICAL CENTER

Tracy Harlan, PharmD
PGY1 Ambulatory Care Pharmacy Resident
University of Iowa Health Care
Tracy-harlan@uiowa.edu
Evaluation of Iron Deficiency Anemia in a Hematology-Oncology Population at a Large Academic Medical Center

Tracy Harlan, Pharm.D.
PGY1 Pharmacy Resident with an Ambulatory Care Focus
University of Iowa Hospitals and Clinics (UIHC), Iowa City, IA
Disclaimer

• Tracy Harlan reports that she has no actual or potential conflict of interest in relation to this presentation.

• Off-label use of medication will not be discussed during this presentation.
Holden Cancer Center (HCC)

- Iowa’s only National Cancer Institute (NCI) designated comprehensive cancer center
- 54,400 patient visits scheduled for fiscal year 2015
Objectives

• Explain the benefit of ensuring the proper evaluation and treatment of iron deficiency anemia in patients with cancer

• Recognize laboratory values warranting further workup of iron deficiency anemia

• Interpret laboratory values indicative of iron deficiency anemia
Cancer-Related Anemia (CRA)

- Anemia is a common complication found in many patients with cancer
- Occurrence of anemia in this population is ~40%
- Presence of anemia is associated with overall decreased quality of life
- Pathophysiology of CRA is often multifactorial

Cancer. Nov 2003; 98(9): 1786-1801.
Study Objectives

• Examine the percentage of patients who appropriately received iron studies

• Determine if opportunities for improvement exist in evaluation of iron deficiency anemia
Study Design

• Retrospective analysis of patients with Hb ≤ 11 g/dL and MCV ≤ 80 fL between 4/1/14 and 9/30/14
• Approved by the UIHC Institutional Review Board
• Patients identified through UIHC electronic medical records
• Statistical tests
 – Descriptive statistics were used to analyze data
Study Design

Inclusion Criteria
- Ambulatory patients with an active non-myeloid malignancy followed by HCC
- Hemoglobin $\leq 11 \text{ g/dL}$ AND Mean corpuscular volume (MCV) $\leq 80 \text{ fL}$
- >18 years of age

Exclusion Criteria
- Sickle cell disease
- Thrombophilia
- Myeloid or lymphoid malignancy
- Thalassemia
- No active cancer
Data Collection

• Demographics
 – Age
 – Gender
 – Cancer diagnosis

• Iron studies
 – Serum iron, ferritin, TSAT, transferrin, TIBC, UIBC

• Complete blood count

• Treatment
 – Iron therapy, erythropoietin stimulating agents, blood transfusions
Outcome Measures

• Primary outcome
 – Percentage of patients in which iron studies were obtained upon meeting criteria for evaluation of IDA (Hb ≤ 11 g/dL and MCV ≤ 80 fL)

• Secondary outcomes
 – Number and percentage of patients:
 • Receiving oral iron, parenteral iron, or erythropoietin stimulating agents (ESAs)
 • Requiring blood transfusions
Results

260 patients were screened

140 patients excluded

120 patients included
Results

Excluded patients

- n=35 (25%)
- n=70 (50%)
- n=15 (11%)
- n=7 (5%)
- n=6 (4%)
- n=5 (4%)
- n=2 (1%)

- Myeloid or lymphoid malignancy
- No active cancer
- Hb and MCV don't meet criteria
- Thalassemia
- Sickle cell
- Never seen in clinic
- Thrombophilias
Baseline Demographics (n=120)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y, mean</td>
<td>59.5</td>
</tr>
<tr>
<td>Gender, no. (%)</td>
<td></td>
</tr>
<tr>
<td>• Male</td>
<td>41 (34.2)</td>
</tr>
<tr>
<td>• Female</td>
<td>79 (65.8)</td>
</tr>
<tr>
<td>Cancer diagnosis, no. (%)</td>
<td></td>
</tr>
<tr>
<td>• Breast</td>
<td>14 (11.7)</td>
</tr>
<tr>
<td>• Lung</td>
<td>10 (8.3)</td>
</tr>
<tr>
<td>• Ovarian</td>
<td>11 (9.2)</td>
</tr>
<tr>
<td>• Renal</td>
<td>11 (9.2)</td>
</tr>
<tr>
<td>• Pancreatic</td>
<td>9 (7.5)</td>
</tr>
<tr>
<td>• Colon</td>
<td>9 (7.5)</td>
</tr>
<tr>
<td>• Cervical</td>
<td>7 (5.8)</td>
</tr>
<tr>
<td>• Rectal</td>
<td>6 (5.0)</td>
</tr>
<tr>
<td>• Endometrial</td>
<td>6 (5.0)</td>
</tr>
<tr>
<td>• Other<sup>a</sup></td>
<td>37 (30.8)</td>
</tr>
</tbody>
</table>

^aOther cancers with incidence of five or less
Testing for Iron Deficiency Anemia

- No iron studies: n=61 (51%)
- Iron studies: n=59 (49%)
 - Functional IDA: n=25 (42%)
 - Absolute IDA: n=23 (39%)
 - Unable to determine: n=9 (15%)
 - No IDA: n=2 (4%)
Iron Therapy Received

- Absolute iron deficiency: 7 (Oral), 3 (Parenteral), 6 (Oral & Parenteral), 7 (None)
- Functional iron deficiency: 12 (Oral), 0 (Parenteral), 2 (Oral & Parenteral), 11 (None)
- No iron deficiency: 0 (Oral), 0 (Parenteral), 0 (Oral & Parenteral), 2 (None)
- No iron studies: 13 (Oral), 2 (Parenteral), 2 (Oral & Parenteral), 0 (None)
Iron studies done

Incidence of PRBC transfusions

- **Functional IDA**
 - Iron therapy: 35.70%
 - No Iron therapy: 27.20%

- **Absolute IDA**
 - Iron therapy: 25.00%
 - No Iron therapy: 42.90%
No iron studies

<table>
<thead>
<tr>
<th>Incidence of PRBC transfusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron therapy</td>
</tr>
<tr>
<td>30.00%</td>
</tr>
<tr>
<td>35.00%</td>
</tr>
<tr>
<td>40.00%</td>
</tr>
<tr>
<td>45.00%</td>
</tr>
<tr>
<td>50.00%</td>
</tr>
<tr>
<td>55.00%</td>
</tr>
<tr>
<td>60.00%</td>
</tr>
</tbody>
</table>
Conclusions

• Nearly half of the study population met criteria for iron studies, but did not receive them

• Of patients who had iron studies performed, 81% met criteria for IDA

• Incidence of blood transfusions was greater in absolute IDA group who did not receive iron therapy

• Opportunities exist for improvement in further evaluation of IDA
Acknowledgements

• Residency project advisors:
 • Jill E. Stein, Pharm.D., BCOP
 • Susan Fajardo, Pharm.D.
 • Susan Sorenson, RPh, BCOP
 • Deanna McDanel, Pharm.D., BCPS, BCACP

• Student research assistant
 • Katharyn Stange, Pharm.D. Candidate
Evaluation of Iron Deficiency Anemia in a Hematology-Oncology Population at a Large Academic Medical Center

Tracy Harlan, Pharm.D.
PGY1 Pharmacy Resident with an Ambulatory Care Focus
University of Iowa Hospitals and Clinics (UIHC), Iowa City, IA
Emily I-Chau Liang, PharmD

PGY1 Pharmacy Practice Resident

UnityPoint Health/Allen Memorial

I-Chau.Liang@unitypoint.org
Pharmacy Coordinated Procalcitonin Level to Direct Antimicrobial Therapy Duration

Emily I-Chau Liang, Pharm.D.
PGY1 Pharmacy Resident
Allen Hospital
1731 W Ridgeway Ave, Waterloo, IA
Disclosure Statement

Disclosure statement: these individuals have the following to disclose concerning possible financial or personal relationships with commercial entities (or their competitors) that may be referenced in this presentation.

- Resident:
 Emily I-Chau Liang has nothing to disclose.

- Project Director and Advisor:
 Jeff Martin and Lisa Veit have nothing to disclose.
Objectives

- **Objective #1)**
 - Identify procalcitonin as a biomarker for detecting the severity of bacterial infection.

- **Objective #2)**
 - Recognize procalcitonin to be a safe and effective biomarker for early discontinuation of antimicrobial therapy in patients with sepsis and/or pneumonia.
Background: Procalcitonin 7,9

- Precursor hormone of calcitonin
 - Procalcitonin (PCT) ↑ in response to severe systemic inflammation by bacterium.

- Generation: Activation of monocyctic cells.
 - Occurs during sepsis and other conditions such as tissue trauma, pancreatitis...etc.

- Sensitivity: 67% to 80%
- Specificity: 70% to 91%
- Peak: Between 24 to 48 hours after onset of infection.
- After reaching peak level
 - PCT ↓ by 50% at 1 to 1 ½ days.
Background: Level Indication

- **PCT levels**
 - Healthy individual: < 0.1 ng/mL
 - Severe bacterial infection: ≥ 0.5 ng/mL
 - High levels of PCT
 - Increased mortality risk
 - Poor prognosis

- **False Elevation**
 - Conditions
 - Medications

- **Elimination**
 - Kidney
Background: Evidence

- PCT-guided versus Control in Antibiotic Duration

Background: PCT Utilization

- Procalcitonin (PCT) has been shown to be an effective biomarker for early discontinuation of antimicrobial therapy
 - Sepsis or pneumonia patients
- Early discontinuation
 - Reduce medication adverse events
 - Minimize microbial resistance
 - Lower hospital cost
- Pharmacists are a good asset
 - Understand medications
 - Existing systems in place to monitor lab values
 - No published study has incorporated pharmacists into the process of monitoring PCT levels
Purpose

- Explore the effect of implementing a pharmacist coordinated PCT level monitoring protocol to assist in the decision making process for antimicrobial therapy
Methodology

- A Prospective Observational Case-Control Study at a Single Facility.

- Outcomes of interest
 - Duration of antibiotic therapy (Primary)
 - Length of hospital stay, readmission due to same infection within one month, successfulness of protocol implementation, acceptance rate of recommendations

- Other pertinent information
 - Start date: January 5\(^{th}\), 2015
 - Guidance: Protocol and algorithm
 - IRB and P&T approval, Hospitalists agreed

- Duration
 - Up to 50 patients
 - 2 months
Allen Hospital Procalcitonin Algorithm for Considering Early Discontinuation of Antibiotic Treatment for Pneumonia and/or Sepsis in Non-Pregnant Patients ≥ 18 y.o.

- ICU
 - 3 Med
 - 4 Med

Antibiotics ordered by hospitalists for treatment of pneumonia or sepsis that required verification by pharmacists.

Ordered by sepsis or pneumonia order set.

- Patient has conditions such as:
 1) Surgery
 2) Trauma
 3) Burn
 4) Pancreatitis
 5) Auto immune disorders
 6) Severe renal or liver dysfunction
 7) End stage of tumor disease
 8) Acute rhabdomyolysis

- Medications such as:
 1) OKT3 antibodies
 2) Monoclonal antibodies
 3) Polyclonal antibodies
 4) Interleukins

Pharmacists verify ABX use for pneumonia or sepsis by:
 1) Diagnosis
 2) Notes
 3) Problem lists

- Yes
 - Do not order PCT. Likely produce false elevation of PCT. Evidence does not support use.
 - Pharmacists order initial PCT within 12 hours of admission.
 - Order 2nd PCT at least 48 hours after 1st.
 - Open new I-Vent (types: Grant) linked with the antibiotics of choice for identification and documentation purposes.

- No
 - Do not order PCT.
 - Pharmacists help monitor that PCT is ordered every 48 hours and recommend ABX use to hospitalists

- PCT value
 - <0.1 ng/mL or drops by > 90%
 - Cessation Strongly Encouraged
 - Consider continuing antibiotics if clinically unstable.
 - 0.1-0.24 ng/mL or drops by > 80%
 - Cessation Encouraged
 - 0.25-0.5 ng/mL
 - Cessation Discouraged
 - >0.5 ng/mL
 - Cessation Strongly Discouraged
 - Poor prognostic: if PCT is rising or not decreasing by at least 10% per day.
 - Consider other diagnoses or broaden antibiotic coverage.

ABX: Antibiotic treatments
PCT: Procalcitonin level
Results-Primary

- Duration of antibiotic therapy

Fraction of Total Patients

- PCT-Guided (25 patients)
- Non-PCT Guided (50 patients)
Results - Secondary

- Successfulness of protocol implementation

<table>
<thead>
<tr>
<th>Test outcome</th>
<th>Total patient (n=91)</th>
<th>PCT ordered</th>
<th>Not ordered</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eligible</td>
<td>26</td>
<td>16</td>
<td></td>
<td>Successful inclusion 26/(26+16) → 61.9%</td>
</tr>
<tr>
<td>Non-Eligible</td>
<td>6</td>
<td>43</td>
<td></td>
<td>Successful exclusion 43/(6+43) → 87.8%</td>
</tr>
</tbody>
</table>

- **Ability to order Correctly (Sensitivity)**: 26/(26+6) → 81.25%
- **Ability to exclude Correctly (Specificity)**: 43/(16+43) → 72.88%
- **Accuracy**: (26+43)/91 → 75.8%
Results - Secondary

- Acceptance Rate of Recommendation

<table>
<thead>
<tr>
<th>Acceptance Rate of Recommendation</th>
<th>Yes</th>
<th>No</th>
<th>Other (No recommendation made or patient discharged prior to 2nd PCT level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total count</td>
<td>14</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Percentage</td>
<td>56%</td>
<td>8%</td>
<td>36%</td>
</tr>
</tbody>
</table>
Discussion

- **Results:**
 - **Duration of antibiotic therapy**
 - Favors PCT guided
 - **Length of hospital stay**
 - Favors PCT guided
 - **Readmission in one month**
 - Favors non-PCT guided
 - **Successfulness of protocol implementation**
 - Accuracy of 75%
 - **Acceptance Rate of recommendation**
 - Rate of 60%
Discussion

Limitations:

◦ Retrospective data
◦ Small sample population
◦ Other considerations
 • Antibiotic spectrum
◦ Confounding factors
 • False elevation of PCT
◦ Loss of 2nd PCT level due to early discharge
◦ Comorbidities and age of patients

Future directions:

◦ Antibiotics
 • Coverage, number, cost…etc.
◦ Other comorbidities
 • COPD, asthma, diabetes…etc.
Conclusion

- **Clinical judgment is always the key!**
 - Other labs, cultures, and patient’s disease progression have to be considered as well.

- PCT provides another piece of evidence for clinical decision of early discontinuation of antibiotics.

- Positive clinical finding trumps PCT.

- PCT is proven effective for early discontinuation of antibiotic in sepsis/pneumonia.
References

EVALUATING PHARMACIST INTERVENTIONS PERFORMED DURING IMPLEMENTATION OF A NEW-PAYER MODEL USING PROFESSIONAL SERVICE FEES

Rani Raju, PharmD

PGY1 Community Pharmacy Resident

University of Iowa/Towncrest Pharmacy

Rani-raju@uiowa.edu
Evaluating Pharmacist Interventions Performed During Implementation of a New-Payer Model using Professional Fees

Rani Raju, Pharm.D.
PGY1 Community Practice Resident
University of Iowa College of Pharmacy
Iowa City, IA
Disclosure Statement

Disclosure statement: these individuals have the following to disclose concerning possible financial or personal relationships with commercial entities (or their competitors) that may be referenced in this presentation.

- Resident: Rani Raju has nothing to disclose.
- Project Director, Advisors, & Co-Investigators: Randy McDonough, Michael Deninger, William Doucette, and Stevie Veach have nothing to disclose.
Background

• Community pharmacists can improve patient outcomes1
• Dispensing reimbursement is based upon2:
 • Ingredient costs
 • Dispensing fees
 • Does not pay for costs to resolve problems identified by dispensing pharmacists
• Reimbursement utilizing MTM platforms.
• Pilot project initiated between local payer and independent pharmacy
 • Professional fee + Dispensing fee per prescription for plan patients
Objectives

• To quantify, classify and evaluate the types of interventions documented by pharmacists when paid a professional fee in addition to a dispensing fee
Methodology

• Study Design: Retrospective chart review

• Patient Population: ~ 600 patients were enrolled in this specific health plan and fill prescriptions at this independent pharmacy

• Data Collection: Patient data extracted from PharmClin® software from April 1, 2014 to October 31, 2014
Results

Table 1. Patient Demographics (N=193)

<table>
<thead>
<tr>
<th>Sex n (%)</th>
<th>Female 103 (53%)</th>
<th>Male 90 (47%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ages < 18 years (n)</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Ages 18-64 years (n)</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>Ages > 65 years (n)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Average Age (years)</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Average # of Medications</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>Patients with Documented Interventions n (%)</td>
<td>140 (73%)</td>
<td></td>
</tr>
<tr>
<td>Total Interventions (n)</td>
<td>483</td>
<td></td>
</tr>
</tbody>
</table>
Fig 1. Pharmacist Interventions (N=483)

- Rx Counseling: 49.9%
- Drug Therapy Problem: 29.8%
- Patient Education: 11.0%
- SOAP Notes: 3.9%
- Other: 2.9%
- Injections: 1.4%
- MTM: 0.4%
- DI Request: 0.4%
- Patient Screening: 0.2%
Results

Table 2. DTP Identified Categories (N = 144)

<table>
<thead>
<tr>
<th>Category</th>
<th>Count (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-adherence n (%)</td>
<td>119 (83%)</td>
</tr>
<tr>
<td>Drug-Drug Interaction n (%)</td>
<td>11 (8%)</td>
</tr>
<tr>
<td>Other n (%)</td>
<td>10 (7%)</td>
</tr>
<tr>
<td>High Risk Medication n (%)</td>
<td>2 (1%)</td>
</tr>
<tr>
<td>Therapeutic Duplication n (%)</td>
<td>2 (1%)</td>
</tr>
</tbody>
</table>
Discussion

• Nearly 75% of patients had a pharmacist intervention
• Majority of pharmacist interventions:
 • Prescription counseling (50%)
• Most common drug therapy problem (DTP):
 • Medication adherence (83%)

Limitations:
• Flagging cohort patients
• Varying pharmacist documentation style
• Clinical software updates Sept 2014
Conclusion

• Pharmacists can make critical clinical interventions during dispensing process.

• Better clinical documentation of interventions can:
 • Shift pharmacy practice to focus more on delivering quality health care
 • Show pharmacists’ value as health care providers

• Research is in progress to determine:
 • Total health care spend
 • Pharmacy performance measures.
References

 http://www.uspharmacist.com/content/s/216/c/34894/
Questions
ASSESSING ATTITUDES AND KNOWLEDGE OF PATIENTS AND PROVIDERS ABOUT ROLES AND SERVICES FOR DIABETES CARE

Valerie Wersching, PharmD

PGY1 Community Pharmacy Resident

University of Iowa/Osterhaus Pharmacy

Valerie-wersching@uiowa.edu
ASSESSING ATTITUDES AND KNOWLEDGE OF PATIENTS AND PROVIDERS ABOUT ROLES AND SERVICES FOR DIABETES CARE

Working Together to Manage Diabetes: A CDC Toolkit for Pharmacy, Podiatry, Optometry, and Dentistry

Valerie Wersching, PharmD
University of Iowa College of Pharmacy
PGY-1 Community Pharmacy Practice Resident
Osterhaus Pharmacy
Disclosure

• No conflict of interest to disclose
• Did not receive funding from any source
Background of Study

• Three main questions
 – How much do patients know about their diabetes care and the various providers that play a role?
 – How much do providers know about what each other can offer in the care of patients with diabetes?
 – Does better coordination of care amongst various providers lead to better outcomes for our mutual patients with diabetes?
What is PPOD?

- A toolkit developed by the CDC to encourage providers (in particular pharmacists, podiatrists, optometrists, and dentists) to take a multidisciplinary approach in caring for patients with diabetes
- It recommends evaluating the whole patient, not just individual specialties
The Toolkit

- 112 pages
- Introduction to a team approach
- Brief information on each PPOD provider
- Goals for diabetes management (A1c, blood glucose, etc.)
- Recommended screenings and follow-ups
- Patient resources
PPOD Providers:

- Reinforce consistent messages to patients across different disciplines
- Encourage patients to complete annual recommended screenings and follow-ups
- Provide patients with education about diabetes and how to self-manage their condition
- Identify potential diabetes complications and refer patient to physician or other PPOD provider for follow-up
- Monitor diabetes clinical markers and progression of disease
The Importance of Coordinating Care in Diabetes

- Minimize disease-related complications
 - Periodontal disease
 - Neuropathy
 - Blindness
 - Cardiovascular disease
 - Renal insufficiency

- Reduce healthcare costs
 - Constitutes 27% of national healthcare medication costs

- Optimize outcomes

- Improve patient education and self-management
Study Objectives

• To assess:
 – Patients’ knowledge of the recommendations for diabetes care and the role of PPOD providers in their care
 – The effect of introducing the CDC’s PPOD toolkit on providers’ knowledge of each others’ services offered in managing diabetes and attitudes toward collaborating
Study Methods

• Phase 1: Patient portion
 – Patient population: Age ≥ 18 that filled any diabetes medication from 01/01/14 to 12/31/14. Exclusion criteria: cognitive deficits and metformin use for Polycystic Ovary Syndrome

• Phase 2: Provider portion
 – PPOD providers practicing in Maquoketa, IA
Phase 1: Patient Portion of Study

- 294 eligible patients
- 275 received the survey at the next prescription fill

- Surveys were distributed from 1/13/15 to 2/28/15
- 86 surveys were collected (31.3% response rate)
- Patients were age 66.0 ± 12.0, 40.7% female, and 65% had diabetes for > 5 years
- Patients scored an average of 62.0% on the patient survey (s.d. 13.4%)
Phase 1: Patient Portion of Study

Knowledge of PPOD Providers' Role in Their Diabetes Care
(% Answered Correctly)

- Pharmacist: 46%
- Podiatrist: 45%
- Optometrist: 41%
- Dentist: 26%
Phase 2: Provider Portion of Study

Invited local PPOD Providers:
- 2 podiatrists
- 2 optometrists
- 3 pharmacists
- 7 dentists

Pre- and post-surveys were distributed to meeting attendees

- 5 Providers attended provider meeting (all were dentists)
- Meeting introduced PPOD toolkit, gave an overview of different professions, provided sample interprofessional cases, and discussed ways of collaborating
- Pre- and post-surveys assessed knowledge of standards for diabetes care, services offered by different PPOD providers, and willingness to collaborate
Phase 2: Provider Portion of Study

Willingness to Collaborate

<table>
<thead>
<tr>
<th></th>
<th>Pre-Meeting Survey</th>
<th>Post-Meeting Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agree</td>
<td>40.0%</td>
<td>20.0%</td>
</tr>
<tr>
<td>Strongly Agree</td>
<td>60.0%</td>
<td>80.0%</td>
</tr>
</tbody>
</table>
Phase 2: Provider Portion of Study

% Answered Correct (p=0.794)

<table>
<thead>
<tr>
<th>% Answered Correct</th>
<th>Pre-Meeting Survey</th>
<th>Post-Meeting Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>73%</td>
<td>74%</td>
</tr>
</tbody>
</table>

The graph shows that the percentage of answers correct increased from 73% in the Pre-Meeting Survey to 74% in the Post-Meeting Survey, with a p-value of 0.794.
Discussion

- Patient survey responses suggested gaps in knowledge of PPOD providers’ role in their diabetes care
- Of the 4 PPOD providers, patients more frequently identified roles of pharmacists and podiatrists in their diabetes care
- Providers’ knowledge of each others’ services remained constant between pre- and post-meeting survey
- PPOD providers were willing to collaborate both pre- and post-provider meeting
- Ideas were shared at the local PPOD provider meeting on the process of communication and coordination of care with each other
Limitations and Conclusions

- **Limitations:**
 - Distribution period for patient surveys was limited to a 9 week period
 - No intervention or post-survey was given to patients
 - Only dentists attended the PPOD meeting

- **Conclusions:**
 - Patients’ knowledge of their diabetes and the PPOD providers’ roles were low
 - Pharmacists will provide education to patients on the roles of PPOD providers and appropriate follow-up
 - Plans for formal collaboration with local PPOD providers are in process
References

Thank You!!!

Feel free to contact me!

Valerie Wersching, PharmD
valerie-wersching@uiowa.edu
(563) 652-5611 (Osterhaus #)
(847) 903-8763 (cell)
THANKS FOR ATTENDING!

JOIN US TUESDAY, MAY 12:
OPEN FORUM ON
PROPOSED IPA POLICIES

Questions? Contact Laura Miller at lmiller@iarx.org or 515-270-0713